56,141 research outputs found

    Designing Cities: A study of collaborative interdisciplinary practice in the London area

    Get PDF
    This report present the findings of research undertaken to support the development of our new undergraduate planning degree, BA Designing Cities, Planning and Architecture. The research investigated collaborative architectural and planning practice in the London area

    Quantum geometry from 2+1 AdS quantum gravity on the torus

    Full text link
    Wilson observables for 2+1 quantum gravity with negative cosmological constant, when the spatial manifold is a torus, exhibit several novel features: signed area phases relate the observables assigned to homotopic loops, and their commutators describe loop intersections, with properties that are not yet fully understood. We describe progress in our study of this bracket, which can be interpreted as a q-deformed Goldman bracket, and provide a geometrical interpretation in terms of a quantum version of Pick's formula for the area of a polygon with integer vertices.Comment: 19 pages, 11 figures, revised with more explanations, improved figures and extra figures. To appear GER

    Randomized benchmarking of atomic qubits in an optical lattice

    Full text link
    We perform randomized benchmarking on neutral atomic quantum bits (qubits) confined in an optical lattice. Single qubit gates are implemented using microwaves, resulting in a measured error per randomized computational gate of 1.4(1) x 10^-4 that is dominated by the system T2 relaxation time. The results demonstrate the robustness of the system, and its viability for more advanced quantum information protocols.Comment: 11 pages, 4 figure

    Comparative Quantizations of (2+1)-Dimensional Gravity

    Full text link
    We compare three approaches to the quantization of (2+1)-dimensional gravity with a negative cosmological constant: reduced phase space quantization with the York time slicing, quantization of the algebra of holonomies, and quantization of the space of classical solutions. The relationships among these quantum theories allow us to define and interpret time-dependent operators in the ``frozen time'' holonomy formulation.Comment: 24 pages, LaTeX, no figure

    Competition and cooperation in one-dimensional stepping stone models

    Get PDF
    Cooperative mutualism is a major force driving evolution and sustaining ecosystems. Although the importance of spatial degrees of freedom and number fluctuations is well-known, their effects on mutualism are not fully understood. With range expansions of microbes in mind, we show that, even when mutualism confers a distinct selective advantage, it persists only in populations with high density and frequent migrations. When these parameters are reduced, mutualism is generically lost via a directed percolation process, with a phase diagram strongly influenced by an exceptional DP2 transition.Comment: 8 pages, 4 figure

    Renormalization Group Invariants in the MSSM and Its Extensions

    Full text link
    We derive one-loop renormalization group (RG) invariant observables and analyze their phenomenological implications in the MSSM and its \mu problem solving extensions, U(1)' model and NMSSM. We show that there exist several RG invariants in the gauge, Yukawa and soft-breaking sectors of each model. In general, RG invariants are highly useful for projecting experimental data to messenger scale, for revealing correlations among the model parameters, and for probing the mechanism that breaks supersymmetry. The Yukawa couplings and trilinear soft terms in U(1)' model and NMSSM do not form RG invariants though there exist approximate invariants in low tan(beta). In the NMSSM, there are no invariants that contain the Higgs mass-squareds. We provide a comparative analysis of RG invariants in all three models and analyze their model-building and phenomenological implications by a number of case studies.Comment: 32 pages, 5 tables; extended previous analysis to include U(1)' models and NMSSM where a comparative discussion is give

    Transformation of stimulus correlations by the retina

    Get PDF
    Redundancies and correlations in the responses of sensory neurons seem to waste neural resources but can carry cues about structured stimuli and may help the brain to correct for response errors. To assess how the retina negotiates this tradeoff, we measured simultaneous responses from populations of ganglion cells presented with natural and artificial stimuli that varied greatly in correlation structure. We found that pairwise correlations in the retinal output remained similar across stimuli with widely different spatio-temporal correlations including white noise and natural movies. Meanwhile, purely spatial correlations tended to increase correlations in the retinal response. Responding to more correlated stimuli, ganglion cells had faster temporal kernels and tended to have stronger surrounds. These properties of individual cells, along with gain changes that opposed changes in effective contrast at the ganglion cell input, largely explained the similarity of pairwise correlations across stimuli where receptive field measurements were possible.Comment: author list corrected in metadat
    • …
    corecore